Connection preserving deformations and q-semi-classical orthogonal polynomials

نویسندگان

  • Christopher M. Ormerod
  • Nicholas S. Witte
  • Peter J. Forrester
  • PETER J. FORRESTER
چکیده

We present a framework for the study of q-differential equations satisfied by q-semi-classical orthogonal systems. As an example, we identify the q-differential equation satisfied by a deformed version of the little q-Jacobi polynomials as a guage transformation of a special case of the associated linear problem for q-PV I . We obtain a parametrization of the associated linear problem in terms of orthogonal polynomial variables. We find a relation between this parameterization and the parameterization of Jimbo and Sakai.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Semi-classical Laguerre polynomials and a third order discrete integrable equation

The connection between semi-classical orthogonal polynomials and discrete integrable systems is well established. The earliest example of a discrete integrable system in semi-classical orthogonal polynomials can be attributed first to Shohat in 1939 [16], then second by Freud [10] in 1976. However it wasn’t until the 1990’s, when the focus within integrable systems shifted from continuous to di...

متن کامل

Connection and linearization coefficients of the Askey-Wilson polynomials

The linearization problem is the problem of finding the coefficients Ck (m,n) in the expansion of the product Pn(x)Qm(x) of two polynomial systems in terms of a third sequence of polynomials Rk (x), Pn(x)Qm(x) = n+m ∑ k=0 Ck (m,n)Rk (x). The polynomials Pn , Qm and Rk may belong to three different polynomial families. In the case P = Q = R, we get the (standard ) linearization or Clebsch-Gordan...

متن کامل

Lowering and raising operators for some special orthogonal polynomials

This paper discusses operators lowering or raising the degree but preserving the parameters of special orthogonal polynomials. Results for onevariable classical (q-)orthogonal polynomials are surveyed. For Jacobi polynomials associated with root system BC2 a new pair of lowering and raising operators is obtained.

متن کامل

Connection of Semi-integer Trigonometric Orthogonal Polynomials with Szegö Polynomials

In this paper we investigate connection between semi-integer orthogonal polynomials and Szegő’s class of polynomials, orthogonal on the unit circle. We find a representation of the semi-integer orthogonal polynomials in terms of Szegő’s polynomials orthogonal on the unit circle for certain class of weight functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009