Connection preserving deformations and q-semi-classical orthogonal polynomials
نویسندگان
چکیده
We present a framework for the study of q-differential equations satisfied by q-semi-classical orthogonal systems. As an example, we identify the q-differential equation satisfied by a deformed version of the little q-Jacobi polynomials as a guage transformation of a special case of the associated linear problem for q-PV I . We obtain a parametrization of the associated linear problem in terms of orthogonal polynomial variables. We find a relation between this parameterization and the parameterization of Jimbo and Sakai.
منابع مشابه
Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملSemi-classical Laguerre polynomials and a third order discrete integrable equation
The connection between semi-classical orthogonal polynomials and discrete integrable systems is well established. The earliest example of a discrete integrable system in semi-classical orthogonal polynomials can be attributed first to Shohat in 1939 [16], then second by Freud [10] in 1976. However it wasn’t until the 1990’s, when the focus within integrable systems shifted from continuous to di...
متن کاملConnection and linearization coefficients of the Askey-Wilson polynomials
The linearization problem is the problem of finding the coefficients Ck (m,n) in the expansion of the product Pn(x)Qm(x) of two polynomial systems in terms of a third sequence of polynomials Rk (x), Pn(x)Qm(x) = n+m ∑ k=0 Ck (m,n)Rk (x). The polynomials Pn , Qm and Rk may belong to three different polynomial families. In the case P = Q = R, we get the (standard ) linearization or Clebsch-Gordan...
متن کاملLowering and raising operators for some special orthogonal polynomials
This paper discusses operators lowering or raising the degree but preserving the parameters of special orthogonal polynomials. Results for onevariable classical (q-)orthogonal polynomials are surveyed. For Jacobi polynomials associated with root system BC2 a new pair of lowering and raising operators is obtained.
متن کاملConnection of Semi-integer Trigonometric Orthogonal Polynomials with Szegö Polynomials
In this paper we investigate connection between semi-integer orthogonal polynomials and Szegő’s class of polynomials, orthogonal on the unit circle. We find a representation of the semi-integer orthogonal polynomials in terms of Szegő’s polynomials orthogonal on the unit circle for certain class of weight functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009